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Fuzzy regression provides an alternative to statistical regression when the
model is indefinite, the relationships between model parameters are vague, sam-
ple size is low or when the data are hierarchically structured. The fuzzy re-
gression is thus applicable in cases, where the data structure prevents statistical
analysis.

Here, we explain the implementation of fuzzy linear regression methods in
the R [7] package fuzzyreg [9]. The Chapter 1: Quick start guides the user
through the direct steps necessary to obtain a fuzzy regression model from crisp
(not fuzzy) data. Followed by the Chapter 4.2, the user will be able to infer and
interpret the fuzzy regression model.
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1 Quick start

To install, load the package and access help, run the following R code:

> install.packages("fuzzyreg", dependencies = TRUE)

> require(fuzzyreg)

> help(package = "fuzzyreg")

Next, load the example data and run the fuzzy linear regression using a
wrapper function fuzzylm that simulates the established functionality of other
regression functions and uses the formula and data arguments:
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> data(fuzzydat)

> f = fuzzylm(y ~ x, data = fuzzydat$lee)

The result shows the coefficients of the fuzzy linear regression in form of non-
symmetric triangular fuzzy numbers.

> print(f)

Fuzzy linear model using the PLRLS method

Call:

fuzzylm(formula = y ~ x, data = fuzzydat$lee)

Coefficients in form of non-symmetric triangular fuzzy numbers:

center left.spread right.spread

(Intercept) 17.761911 0.7619108 2.7380892

x 2.746428 1.2464280 0.4202387

We can next plot the regression fit, using shading to indicate the degree of
membership of the model predictions.

> plot(f, res = 20, col = "lightblue", main = "PLRLS")
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Figure 1: Fuzzy linear regression using the PLRLS method [5].

Shading visualizes the degree of membership to the triangular fuzzy num-
ber (TFN) with a gradient from lightblue to white, indicating the decrease of
the degree of membership from 1 to 0. The central tendency (thick line) in
combination with the left and the right spreads determine a support interval

2



(dotted lines) of possible values, i.e. values with non-zero membership degrees,
of model predictions. The left and the right spreads determine the lower and
upper boundary of the interval, respectively, where the degree of membership
equals to 0. We can display the model with the summary function.

> summary(f)

Central tendency of the fuzzy regression model:

y = 17.7619 + 2.7464 * x

Lower boundary of the model support interval:

y = 17 + 1.5 * x

Upper boundary of the model support interval:

y = 20.5 + 3.1666 * x

The total error of fit: 126248409

The mean squared distance between response and prediction: 262.1

2 Triangular fuzzy numbers

The package FuzzyNumbers [2] provides an excellent introduction into fuzzy
numbers and offers a great flexibility in designing the fuzzy numbers. Here, we
implement a special case of fuzzy numbers, the triangular fuzzy numbers.

A fuzzy real number Ã is a fuzzy set defined on the set of real numbers. Each
real value number x belongs to the fuzzy set Ã, with a degree of membership
that can range from 0 to 1. The degrees of membership of x are defined by
the membership function µÃ(x) : x → [0, 1], where µÃ(x∗) = 0 means that the

value of x∗ is not included in the fuzzy number Ã while µÃ(x∗) = 1 means that

x∗ is positively comprehended in Ã (Figure 2).
In FuzzyNumbers, the fuzzy number is defined using side functions. In

fuzzyreg, we simplify the input of the TFNs as a vector of length 3. The
first element of the vector specifies the central value xc, where the degree of
membership is equal to 1, µ(xc) = 1. The second element is the left spread,
which is the distance from the central value to a value xl where µ(xl) = 0 and
xl < xc. The left spread is thus equal to xc−xl. The third element of the TFN
is the right spread, i.e. the distance from the central value to a value xr where
µ(xr) = 0 and xr > xc. The right spread is equal to xr − xc. The central value
xc of the TFN is its core, and the interval (xl, xr) is the support of the TFN.

The crisp number a = 0.5 can be written as a TFN A with spreads equal to
0 (Figure 2):

> A = c(0.5, 0, 0)

The non-symmetric TFN B and the symmetric TFN C are then:

> B = c(1.5, 0.8, 0.4)

> C = c(2.5, 0.5, 0.5)
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Figure 2: Triangular fuzzy numbers.

2.1 Converting crisp numbers to TFNs

When the collected data do not contain spreads, we can directly apply the
PLRLS method to model the relationship between the variables in the fuzzy set
framework (Chapter 1: Quick start). For other methods, the spreads must be
imputed.

• The TFN might have spreads equal to 0 as shown for A in Figure 2.

• Small random spreads might be generated, e.g. using abs(runif(n) *

1e-6), where n is the number of the observations.

• Spreads might represent a known measurement error of the device used to
collect the data.

• Spreads might be calculated as a statistic from the data.

Note that the spreads must always be equal to or greater than zero.

2.2 Converting TFN from class FuzzyNumber

The conversion from an object of the class FuzzyNumber to TFN used in fuzzyreg

requires adjusting the core and the support values of the FuzzyNumber object to
the central value and the spreads. For example, let’s define a trapezoidal fuzzy
number B1 that is identical with TFN B displayed in Figure 2, but that is an
object of class FuzzyNumber.

> require(FuzzyNumbers)

> B1 = FuzzyNumber(0.7, 1.5, 1.5, 1.9,

+ left = function(x) x,

+ right = function(x) 1 - x,

+ lower = function(a) a,

+ upper = function(a) 1 - a)

> B1
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Fuzzy number with:

support=[0.7,1.9],

core=[1.5,1.5].

The core of B1 will be equal to the central value of the TFN if the FuzzyNum-
ber object is a TFN. However, the FuzzyNumbers package considers TFNs as a
special case of trapezoidal fuzzy numbers. The core of B1 thus represents the
interval, where µB1(x∗) = 1, and the support is the interval, where µB1(x∗) > 0.
We can use these values to construct the TFN B.

> xc = core(B1)[1]

> l = xc - supp(B1)[1]

> r = supp(B1)[2] - xc

> c(xc, l, r)

[1] 1.5 0.8 0.4

When the trapezoidal fuzzy number has the core wider than one point, we
need to approximate a TFN. The simplest method calculates the mean of the
core as mean(core(B1)).

We can also defuzzify the fuzzy number and approximate the central value
with the expectedValue() function. However, the expected value is a midpoint
of the expected interval of a fuzzy number derived from integrating the side
functions. The expected values will not have the degree of membership equal to
1 for non-symmetric fuzzy numbers. Constructing the mean of the core might
be a more appropriate method to obtain the central value of the TFN for most
applications.

Fuzzy numbers with non-linear side functions may have large support in-
tervals, for which the above conversion algorithm might skew the TFN. The
function trapezoidalApproximation() can first provide a suitable approxima-
tion of the fuzzy number with non-linear side functions, for which the core and
the support values will suitably reflect the central value and the spreads used
in fuzzyreg.

3 Methods for fitting fuzzy regression models

Methods implemented in fuzzyreg 0.4 fit fuzzy linear models (Table 1).

Table 1: Methods for fitting fuzzy regression with fuzzyreg. m - number of
allowed independent variables x; x, y, ŷ - type of expected number for indepen-
dent, dependent variables and predictions; s - symmetric; ns - non-symmetric.

Method m x y ŷ Reference
PLRLS ∞ crisp crips nsTFN [5]
PLR ∞ crisp sTFN sTFN [8]
OPLR ∞ crisp sTFN sTFN [3]
FLS 1 crisp nsTFN nsTFN [1]
MOFLR ∞ sTFN sTFN sTFN [6]
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Methods that require symmetric TFNs handle input specifying one spread,
but in methods expecting non-symmetric TFN input, both spreads must be
defined even in cases when the data contain symmetric TFNs.

A possibilistic linear regression (PLR) is a paradigm of whole family of
possibilistic-based fuzzy estimators. It was proposed for crisp observations of
the explanatory variables and symmetric fuzzy observations of the response
variable. fuzzyreg uses the min problem implementation [8] that estimates the
regression coefficients in such a way that the spreads for the model response are
minimal needed to include all observed data. Consequently, the outliers in the
data will increase spreads in the estimated coefficients.

The possibilistic linear regression combined with the least squares (PLRLS)
method [5] fits the model prediction spreads and the central tendency with
the possibilistic and the least squares approach, respectively. The input data
represent crisp numbers and the model predicts the response in form of a non-
symmetric TFN. Local outliers in the data strongly influence the spreads, so a
good practice is to remove them prior to the analysis.

The method by Hung and Yang [3] expands PLR [8] by adding an omission
approach for detecting outliers (OPLR). We implemented a version that identi-
fies a single outlier in the data located outside of the Tukey’s fences. The input
data include crisp explanatory variables and the response variable in form of a
symmetric TFN.

Fuzzy least squares (FLS) method [1] supports a simple FLR for a non-
symmetric TFN explanatory as well as a response variable. This probabilistic-
based method (FLS calculates the fuzzy regression coefficients using least squares)
is relatively robust against outliers compared to the possibilistic-based methods.

A multi-objective fuzzy linear regression (MOFLR) method estimates the
fuzzy regression coefficients with a possibilistic approach from symmetric TFN
input data [6]. Given a specific weight, the method determines a trade-off
between outlier penalization and data fitting that enables the user to fine-tune
outlier handling in the analysis.

4 Running a fuzzy linear regression

The TFN definition used in fuzzyreg enables an easy setup of the regression
model using the well-established syntax for regression analyses in R. The model
is set up from a data.frame that contains all observations for the dependent
variable and the independent variables. The data.frame must contain columns
with the respective spreads for all variables that are TFNs.

The example data from Nasrabadi et al. [6] contain symmetric TFNs. The
spreads for the independent variable x are in the column xl and all values are
equal to 0. The spreads for the dependent variable y are in the column yl.

> fuzzydat$nas

x xl y yl

1 1 0 6.4 2.2

2 2 0 8.0 1.8

3 3 0 16.5 2.6

4 4 0 11.5 2.6

5 5 0 13.0 2.4
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Note that the data contain only one column with spreads per variable. This
is an accepted format for symmetric TFNs, because the values can be recycled
for the left and right spreads.

The formula argument used to invoke a fuzzy regression with the fuzzylm()
function will relate y ∼ x. The columns x and y contain the central values of the
variables. The spreads are not included in the formula. To calculate the fuzzy
regression from TFNs, list the column names with the spreads as a character
vector in the respective arguments of the fuzzylm function.

> f2 = fuzzylm(formula = y ~ x, data = fuzzydat$nas,

+ fuzzy.left.x = "xl",

+ fuzzy.left.y = "yl", method = "moflr")

Calls to methods that analyse non-symmetric TFNs must include both ar-
guments for the left and right spreads, respectively. The arguments specify-
ing spreads for the dependent variable are fuzzy.left.y and fuzzy.right.y.
However, if we wish to analyse symmetric TFNs using a method for non-
symmetric TFNs, both argumets might call the same column with the values
for the spreads.

> f3 = fuzzylm(y ~ x, data = fuzzydat$nas,

+ fuzzy.left.y = "yl",

+ fuzzy.right.y = "yl", method = "fls")

As the spreads are included in the model using the column names, the func-
tion cannot check whether the provided information is correct. The issue gains
importance when developing a multiple fuzzy regression model. The user must
ascertain that the order of the column names for the spreads corresponds to the
order of the variables in the formula argument.

The fuzzy regression models can be used to predict new data within the
range of data used to infer the model with the predict function. The reason
for disabling extrapolations from the fuzzy regression models lies in the non-
negligible risk that the support boundaries for the TFN might intersect the
central tendency. The predicted TFNs outside of the range of data might not
be defined. The predicted values will replace the original variable values in the
fuzzylm data structure.

> pred2 = predict(f2)

> pred2$y

central value left spread right spread

[1,] 7.739997 8.32 8.32

[2,] 9.409999 8.80 8.80

[3,] 11.080000 9.28 9.28

[4,] 12.750002 9.76 9.76

[5,] 14.420003 10.24 10.24

4.1 Comparing fuzzy regression models

The choice of the method to estimate the parameters of the fuzzy regression
model is data-driven (Table 1). Following the application of the suitable meth-
ods, fuzzy regression models can be compared according to the sum of differences
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between membership values of the observed and predicted membership functions
[4].

In Figure 3, the points represent central values of the observations and
whiskers indicate their spreads. The shaded area shows the model predictions
with the degree of membership greater than zero. We can compare the models
numerically using the total error of fit

∑
E [4] with the TEF() function:
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Figure 3: Comparison of fuzzy regression models fitted with the MOFLR and
FLS methods. The FLS method has lower total error of fit

∑
E and thus better

reflects the observations.

> TEF(f2)

[1] 16.18616

> TEF(f3)

[1] 6.066592

Lower values of
∑
E mean that the predicted TFNs fit better with the

observed TFNs.

4.2 Interpreting the fuzzy regression model

When comparing the fuzzy linear regression and a statistical linear regression
models, we can observe that while the fuzzy linear regression shows something
akin to a confidence interval, the interval differs from the confidence intervals
derived from a statistical linear regression model (Figure 4).

The confidence interval from a statistical regression model shows the cer-
tainty that the modeled relationship fits within. We are 95% certain that the
true relationship between the variables is as displayed.
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Figure 4: Fuzzy and statistical linear regression. Fuzzy regression displays the
central value and the support boundaries determined by the left and right spread
(PLRLS - left panel). Statistical least-squares regression shows the 95% confi-
dence interval for the regression fit (LS - right panel).

On the other hand, the support of the fuzzy regression model prediction
shows the range of possible values. The dependent variable can reach any value
from the set, but the values more distant from the central tendency will have
smaller degree of membership. We can imagine the values closer to the bound-
aries as vaguely disappearing from the set as if they bleached out (gradient
towards white in the fuzzy regression model plots).

5 How to cite

To cite fuzzyreg, include the reference to the software and the used method.

Škrabánek P. and Mart́ınková N. 2018. fuzzyreg: An R Package for
Fuzzy Linear Regression. In: Čech P., Svozil D. (eds.), ENBIK2018
Conference Proceedings, Prague, 7.

The references for the specific methods are accessible through the method
help, e.g. the default fuzzy linear regression method PLRLS:

> ?plrls
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